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Abstract

The extended finite element method (X-FEM) is a numerical method for modeling strong (displacement) as well as
weak (strain) discontinuities within a standard finite element framework. In the X-FEM, special functions are added to
the finite element approximation using the framework of partition of unity. For crack modeling in isotropic linear
elasticity, a discontinuous function and the two-dimensional asymptotic crack-tip displacement fields are used to ac-
count for the crack. This enables the domain to be modeled by finite elements without explicitly meshing the crack
surfaces, and hence quasi-static crack propagation simulations can be carried out without remeshing. In this paper, we
discuss some of the key issues in the X-FEM and describe its implementation within a general-purpose finite element
code. The finite element program Dynaflow™ is considered in this study and the implementation for modeling 2-d
cracks in isotropic and bimaterial media is described. In particular, the array-allocation for enriched degrees of free-
dom, use of geometric-based queries for carrying out nodal enrichment and mesh partitioning, and the assembly
procedure for the discrete equations are presented. We place particular emphasis on the design of a computer code to
enable the modeling of discontinuous phenomena within a finite element framework.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A problem of significant interest and importance in solid mechanics is the modeling of fracture and
damage phenomena. These material failure processes manifest themselves in quasi-brittle materials such as
rocks and concrete as fracture process zones, shear (localization) bands in ductile metals, or discrete crack
discontinuities in brittle materials. The accurate modeling and the evolution of smeared and discrete
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discontinuities has been a topic of growing interest over the past few decades, with quite a few notable
developments in computational techniques over the past few years.

Early numerical models for treating discontinuities in finite elements can be traced to the work of Ortiz
et al. (1987) and Belytschko et al. (1988). They modeled shear bands as ‘weak’ (strain) discontinuities that
could pass through finite elements using a multi-field variational principle. Dvorkin et al. (1990) con-
sidered ‘strong’ (displacement) discontinuities by modifying the principle of virtual work statement,
whereas Lotfi and Sheng (1995) extended the three-field Hu-Washizu variational statement for bodies
with internal discontinuities. A unified framework for analyzing strong discontinuities by taking into
account the softening constitutive law and the interface traction—displacement relation was put forth by
Simo and co-workers (Simo et al., 1993; Simo and Oliver, 1994). Applications and extensions of this
approach have been proposed by many researchers for pre- as well as post-localization analyses (Armero
and Garikipati, 1996; Sluys and Berends, 1998; Larsson and Runesson, 1996; Larsson et al., 1999;
Regueiro and Borja, 2001; Bolzon and Corigliano, 2000). Borja (2000) presented a standard Galerkin
formulation of the strong discontinuity approach and has shown its equivalence to assumed enhanced
strain approximations.

In the strong discontinuity approach, the displacement consists of regular and enhanced components,
where the enhanced component yields a jump across the discontinuity surface. An assumed enhanced strain
variational formulation is used, and the enriched degrees of freedom are statically condensed on an element
level to obtain the tangent stiffness matrix for the element. A comprehensive review and comparison of
various embedded discontinuity approaches is provided by Jirasek (2000). An alternative approach to
modeling fracture phenomena is the cohesive surface formulation of Xu and Needleman (1994), which has
been used to model damage in brittle materials (Camacho and Ortiz, 1996). The cohesive surface formu-
lation is a phenomenological framework in which the fracture characteristics of the material are embedded
in a cohesive surface traction—displacement relation. Using this approach, an inherent length scale is in-
troduced into the model, and in addition no fracture criterion (K-dominant field) is required; crack growth
and the crack path are outcomes of the analysis.

A significant improvement in crack modeling was realized with the development of a partition-of-unity
based enrichment method for discontinuous fields (Moe¢s et al., 1999), which was referred to as the ex-
tended finite element method (X-FEM) (Dolbow, 1999; Daux et al., 2000). In the X-FEM, special
functions are added to the finite element approximation using the framework of partition of unity (Melenk
and Babuska, 1996; Duarte and Oden, 1996). For crack modeling, a discontinuous function (generalized
Heaviside step function) and the two-dimensional linear elastic asymptotic crack-tip displacement fields
are used to account for the crack. This enables the domain to be modeled by finite elements without
explicitly meshing the crack surfaces. The location of the crack discontinuity can be arbitrary with respect
to the underlying finite element mesh, and quasi-static or fatigue crack propagation simulations can be
performed without the need to remesh as the crack advances. A particularly appealing feature is that the
finite element framework and its properties (sparsity and symmetry) are retained, and a single-field
(displacement) variational principle is used to obtain the discrete equations. This technique provides an
accurate and robust numerical method to model strong (displacement) discontinuities in 2-d (Moés et al.,
1999; Daux et al., 2000) and 3-d (Sukumar et al., 2000), as well as weak (strain) discontinuities (Sukumar
et al., 2001).

In this paper, we describe the main issues in the implementation of the X-FEM, and present a robust and
simple means to incorporate it into a general-purpose finite element program. The finite element program
Dynaflow™ (Prévost, 1983) is considered in this study and the methodology for modeling 2-d cracks in
isotropic and bimaterial media is presented. The initial development of the X-FEM at Northwestern
University and the many recent advances of the method have all been carried out within a C++ code.
However, since most existing finite element codes are in Fortran, we undertake the task to outline the X-
FEM implementation within such a programming environment. The main contributions in this paper are:
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e To provide a detailed account of the main issues that arise in the implementation of the X-FEM, and
how to incorporate them within an existing finite element code so that apart from crack modeling,
the incorporation of other types of discontinuities will also become apparent.

e Design of data structures for variable nodal degrees of freedom array and for the assembly of the discrete
equations. The computational algorithms to select the enriched nodes and to compute the enrichment
functions are described. The need for partitioning of elements is addressed, and its distinction from reme-
shing is pointed out.

o Step-by-step treatment of the assembly procedure of the bilinear form for elements that are cut by the
crack; this aspect has not been described in earlier works. In addition, details on the submatrices and
vectors that arise in the global stiffness matrix and external force vector are provided.

In Section 2, the extended finite element method is introduced and recent applications of the method in
mechanics and materials science are mentioned. Crack modeling in the X-FEM is discussed in Section 2.1.
The implementation of the X-FEM within Dynaflow™ is outlined in Section 3, and a few concluding
remarks are made in Section 4.

2. Extended finite element method

The partition of unity method (Melenk and Babuska, 1996; Duarte and Oden, 1996) generalized finite
element approximations by presenting a means to embed local solutions of boundary-value problems into
the finite element approximation. This idea was first exploited by Oden and co-workers (Oden et al., 1998;
Duarte et al., 1998) for problems with internal boundaries—the numerical technique was termed as the
generalized finite element method (GFEM). Strouboulis et al. (2000) used local enrichment functions in the
GFEM for modeling re-entrant corners and holes, whereas Duarte et al. (2001) simulated dynamic crack
propagation in 3-d using the partition of unity framework. A comprehensive summary of the GFEM
appears in Strouboulis et al. (2001).

In Belytschko and Black (1999), the partition of unity enrichment for crack discontinuities and near-tip
crack fields was introduced. The enrichment functions for crack problems are functions that span the as-
ymptotic near-tip displacement field—see Fleming et al. (1997) for their use in the element-free Galerkin
method (Belytschko et al., 1994). A notable improvement and progress in discrete crack growth modeling
without the need for any remeshing strategy was conceived in Moés et al. (1999). The generalized Heaviside
function was proposed as a means to model the crack away from the crack-tip, with simple rules for the
introduction of the discontinuous and crack-tip enrichments. This advance has provided a robust and
accurate computational tool for modeling discontinuities independent of the crack geometry. The partition
of unity framework satisfies a few key properties which renders it as a powerful tool for local enrichment
within a finite element setting:

1. can include application-specific basis functions to better approximate the solution;

2. automatic enforcement of continuity (conforming trial and test approximations); and

3. point or line singularities as well as surface discontinuities can be handled without the need for the dis-
continuous surfaces to be aligned with the finite element mesh.

The above properties are in sharp contrast to enriched finite elements (Benzley, 1974; Gifford and Hilton,
1978; Ayhan and Nied, 2002), where transition elements are required to satisfy displacement continuity. In
classical as well as enriched finite element methods, remeshing is required to conduct crack growth simu-
lations.
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The X-FEM has been successfully applied to 2-dimensional static and quasi-static crack growth prob-
lems (Moés et al., 1999; Dolbow, 1999; Dolbow et al., 2000a,b; Dolbow et al., 2001; Moés and Belytschko,
2002), with its extension to modeling holes, and branched and intersecting cracks proposed in Daux et al.
(2000). The application of this technique for 3-dimensional crack problems was presented in Sukumar et al.
(2000). The interface of the X-FEM with level set techniques to model weak discontinuities such as material
interfaces (bimaterials) was introduced in Sukumar et al. (2001), whereas the representation of tangential
discontinuities was presented in Belytschko et al. (2001). Recent studies have explored the use of fast
marching and level sets for evolving crack discontinuities in 2-dimensions (Stolarska et al., 2001) and 3-
dimensions within the X-FEM framework. The growth of multiple coplanar cracks in 3-d is handled using
the fast marching method (Sukumar et al., 2003a; Chopp and Sukumar, 2003), whereas non-planar crack
growth is carried out using level sets (Mogs et al., 2002; Gravouil et al., 2002).

The X-FEM has also been utilized to model computational phenomena in areas such as fluid mechanics,
phase transformations, and materials science. In Wagner et al. (2001), a computational model for rigid
particles in Stokes flow was proposed, whereas moving phase boundary problems have been modeled using
the coupled extended finite element and level set methods (Merle and Dolbow, 2002; Ji et al., 2002; Chessa
et al., 2002). Dolbow and Nadeau (2002) investigated the use of effective properties for fracture analysis in
functionally-graded systems, whereas Sukumar et al. (2003b) adopted the X-FEM as a fracture tool to
study the competition between intergranular and transgranular modes of crack growth through a material
microstructure. In other related studies, Wells and Sluys (2001) used the Heaviside step function to model
the displacement discontinuity within a finite-element based cohesive crack model, whereas Wells et al.
(2002) used partition of unity enrichment to alleviate volumetric locking during plastic flow.

2.1. Crack modeling in two-dimensions

In finite elements, a basis function Ny is associated with node 7 in the mesh. Let w; = {x : N;(x) > 0} be
the region of support for N;. The nodes belonging to an element are given by the connectivity of the ele-
ment, whereas its dual wy, is the collection of elements that are associated with a specific node 7 (see Fig. 1).

In the X-FEM, a crack is represented by enriching the classical displacement-based finite element ap-
proximation through the framework of partition of unity (Melenk and Babuska, 1996). A crack is modeled
by enriching the nodes whose nodal shape function support intersects the interior of the crack by a dis-
continuous function, and enriching the nodes whose nodal shape function supports intersect the crack-tip
by the two-dimensional linear elastic asymptotic near-tip fields. Additional degrees of freedom are asso-
ciated with nodes that are enriched. Partitioning algorithms are also implemented if the crack intersects the
finite elements. We first present the enrichment functions used for crack modeling and the criteria for the
selection of the enriched nodes. Then, the need for element partitioning is discussed and lastly, the discrete
equations are presented.

DN

CRACK

Fig. 1. Support w; (dark line) for a nodal shape function.
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2.1.1. Enrichment functions

We will use lower case and upper case bold-faced letters to denote vectors and matrices, respectively. The
Cartesian coordinate axes are denoted by x = (x,y) in 2-d, with Latin lower case indices referring to
Cartesian components. Nodes in the finite element mesh are denoted by Latin subscripts—Ilower case in-
dices refer to the local node number within an element whereas upper case indices are used for the global
node number in the mesh (Hughes, 1987). Consider a body @ C R? that contains an internal traction-free
crack (Fig. 2). For a single crack in 2-dimensions, let I'. be the crack surface (interior) and 4. the crack
tip(s)—the closure I'. = I'. U A.. The description of the enrichment functions follows:

Generalized Heaviside function. The interior of a crack (I'. is the enrichment-domain) is modeled by the
generalized Heaviside enrichment function H, where H takes on the value +1 above the crack and —1 below
the crack (Moes et al., 1999):

1 if (x—x*)-nx=0,
H(x) = { —1 otherwise, (1)

where x is a sample (Gauss) point, x* (lies on the crack) is the closest point to x, and n is the unit outward
normal to the crack at x*.

Near-tip crack functions. To model the crack-tip and also to improve the representation of crack-tip
fields in fracture computations, crack-tip enrichment functions are used in the element which contains the
crack tip. The crack-tip enrichment consists of functions which incorporate the radial and angular behavior
of the two-dimensional asymptotic crack-tip displacement field. The use of the crack-tip functions serves
two main purposes:

1. If the crack were to terminate in the interior of an element, then enriching the crack-tip element with the
Heaviside function would be inaccurate. This is so, since by such a choice the crack would be modeled as
though the segment containing the crack-tip were extended till it intersected the element edge. The crack-
tip enrichment functions ensure that the crack terminates precisely at the location of the crack-tip, and
hence these functions are required to model the crack for this case.

2. The use of the linear elastic (or bimaterial) asymptotic crack-tip fields serve as suitable enrichment func-
tions for they possess the correct near-tip behavior, and in addition, their use also leads to better accu-
racy on relatively coarse finite element meshes in 2-d (Moés et al., 1999; Daux et al., 2000; Huang et al.,
2003a,b; Sukumar et al., 2003a) and 3-d (Sukumar et al., 2000).

The crack-tip enrichment functions in isotropic elasticity are (Fleming et al., 1997):

0 0 0 0
[@,(x), 00 = 1-4] = \/Fsinz,\/FcosE,\/Fsin(%sinz,\/?sinGCOSE , (2)

Fig. 2. Boundary value problem with an internal traction-free crack.
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where  and 0 are polar coordinates in the local crack-tip coordinate system. Note that the first function in
the above equation is discontinuous across the crack. In Fig. 3, the shape function support w; as well as the
local coordinate system for the crack-tip enrichment functions are illustrated.

The use of crack-tip functions is not restricted to crack modeling in isotropic media alone. Consider a
bimaterial with a crack perpendicular to the interface (Fig. 4); the crack terminates at the interface. The
near-tip asymptotic field for this problem has been studied by many researchers (Zak and Williams, 1963;
Bogy, 1971; Cook and Erdogan, 1972; Chen, 1994). The elastic mismatch between the two elastic materials
is characterized by Dundurs parameters (Dundurs, 1969):

_M1(K2+1)_H2(K1+1) _,ul(KZ_l)_,uz(Kl_l)
i pey s prayr e S i oy ) ey o (32)

3 - Vi |
k=14 T (plane stress), (3b)

3 —4v; (plane strain),

where u, and v; are the shear modulus and the Poisson’s ratio, respectively, of material i (i = 1, 2).
The asymptotic displacement field near the tip of a plane strain crack in a bimaterial takes the form
(Chen, 1994)

u;(r,0) = r'~*{a, sin A0 + b; cos 20 + ¢;sin(L — 2)0 + d, cos(/ — 2)0}, (4)

where 4 (0 < A < 1), which is the stress singularity exponent, is a function of the Dundurs parameters and is
given by the root of the transcendental equation (Zak and Williams, 1963)

RACK 9

Fig. 3. Coordinate configuration (r, ) for crack tip enrichment functions.

\ § =

Material 2 h,

Fig. 4. Bimaterial with a crack impinging on the interface.
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e TR &
cos(An) 21 —[3(1 A+ -y 0. (5)
The value of 1 as a function of « and f is tabulated in Beuth (1992). In the case of no mismatch (¢ = f§ = 0),
the stress singularity reduces to the classical inverse /r stress singularity (4 = 1/2) for homogeneous linear
elastic materials. When material 2 is stiffer than material 1 (« < 0), the singularity is weaker (4 < 1/2), and
if material 2 is more compliant than material 1 (« > 0), the singularity is stronger (1 > 1/2).
The crack-tip enrichment functions for the bimaterial crack problem are (Huang et al., 2003a,b):

[¥,(x), 00 = 1-4] = [r'*sin 20, 7' cos 20, 7' " sin(Z — 2)0, ' " cos(4 — 2)0], (6)

where the above functions span the asymptotic crack-tip displacement expansion given in Eq. (4). Note that
in this instance the first function and the third function in the above equation are discontinuous across the
crack (0 = £n). Recently, partition of unity enrichment for modeling bimaterial interface cracks has also
been developed within Dynaflow™; see Sukumar et al. (in press) for details.

2.1.2. Selection of enriched nodes
The approximation for a vector-valued function u with the partition of unity enrichment is of the general
form (Melenk and Babuska, 1996):

W) = 3N () (Z %(x)a;), 9

where N; are the finite element shape functions and i, are the enrichment functions. The finite element
shape functions form a partition of unity: ", N;(x) = 1. From Eq. (7), we note that the finite element space
Y, =1y, =0 (x# 1)) is a subspace of the enriched space.

In the particular instance of 2-d crack modeling, the enriched displacement (trial and test) approxi-
mation is written as (Moé€s et al., 1999):

4
vx) =) N(x)|w+HXa + > O,x)b7 |, (8)
leNr
eV 4

where u; is the nodal displacement vector associated with the continuous part of the finite element solution,
a; is the nodal enriched degree of freedom vector associated with the Heaviside (discontinuous) function,
and b; is the nodal enriched degree of freedom vector associated with the elastic asymptotic crack-tip
functions. In the above equation, .4" is the set of all nodes in the mesh; ./ is the set of nodes whose shape
function support is cut by the crack interior I'.; and .4", is the set of nodes whose shape function support is
cut by the crack tip A, (NN A4 = 0):

JVA = {nK hg € -/1/,@1( N AC 7é @}, (93.)

Np=Any:n; € N 0N #0,n; & N 4} (9b)

For any node in A"y, the support of the nodal shape function is fully cut into two disjoint pieces by the
crack. If for a certain node n;, one of the two pieces is very small compared to the other, then the gene-
ralized Heaviside function used for the enrichment is almost a constant over the support, leading to an ill-
conditioned stiffness matrix (Moés et al., 1999). Therefore, in this case, node »; is removed from the set .4 .
The area-criterion for nodal inclusion in /" is as follows: The area above the crack is 42°°*¢, and the area
below the crack is A% : 4,, = 4% 4 45w _[f ejther of the two ratios, 42°°*/4,, or 4°°%/4,, is below a

(0]
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(b)

(d)

Fig. 5. Heaviside and near-tip nodal enrichment for a 2-d edge-crack problem. The Heaviside enriched nodes are shown in filled circles,
the near-tip enriched nodes are shown in open circles, and the enrichment region can be inferred from the contour plot, where the
contour value on an enriched node is unity and zero on all other nodes. (a) Heaviside enrichment for regular (rectangular) mesh;
(b) Near-tip enrichment for regular (rectangular) mesh; (c) Heaviside enrichment for unstructured (triangular) mesh; and (d) Near-
tip enrichment for unstructured (triangular) mesh.

prescribed tolerance, the node is removed from the set /"4 (Dolbow et al., 2000a). A tolerance e = 107* is
used in the computations.

The enriched nodes for the interior of a crack and those for the crack tip are shown in Fig. 5. From the
contours shown in Fig. 5, one can also infer the region (union of elements) over which the enriched basis
functions are non-zero.

2.1.3. Element partitioning versus remeshing

If a crack intersects an element, the element is subdivided into triangles (in 2-d) such that element edges
are coincident with the crack geometry. We elaborate on this point, since a common misconception has
been that such a procedure is unnecessary, and if it were indeed a requirement, then in essence remeshing is
being carried out. We clarify both these issues.

Referring to Fig. 2, we multiply the strong form of the boundary-value problem by test functions
du € H}(Q) to obtain:

/(V~a)-5udQ+/b~5udQ:0, (10)

Q

where b is the body force per unit volume, ¢ is the Cauchy stress, J is the first variation operator, H| () is
the Sobolev space of functions with square-integrable derivatives that vanish on the essential boundary, and
Q2 is the open set that does not contain the crack surfaces. The above equation is re-written as
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/QV-(m(Su)dQ—/Qo-:V(éu)dQ—k/b-éuszO, (11)

Q

and on using the divergence (Green’s) theorem in Q and the symmetry of &, we have

/ t~5udF+/ t~5ude/a:(5sdQ+/b'5udQ:O, (12)
r,ur, rrur; Q Q

where & =u( ) denotes the symmetric part of the displacement gradient (small strain tensor). Since
t=o0-n=t (prescribed traction) on I';, t=0 on I’ f (traction-free crack faces), and by choosing test
functions that vanish on the essential boundary I, we obtain the weak form (principle of virtual work) for
the continuous problem as:

/a:ésdQ:/f-éudF—i-/b-éudQ Vou € Hy (Q). (13)
Q I Q

In the above derivation, the divergence theorem is used which is applicable to a domain in which u; is
sufficiently regular (must not contain discontinuities or singularities), and hence the crack surfaces must be
an internal boundary of the domain of integration. In the weak statement for the finite element (discrete)
problem, the domain Q must be divided into non-overlapping subdomains (elements 2,) that must conform
to the same requirement as that in the continuous problem. This provides equivalence between the strong
and weak statements of the boundary-value problem.

We can now infer that the discrete weak form demands that element edges must conform to the crack
geometry. If this requirement is not met, then the equivalence between the strong form and the weak form is
lost. If we choose to ignore this fact and do not partition an element that is cut by a crack (see Fig. 6), then
numerical difficulties also arise. For crack modeling, the classical finite element space is enriched by a
discontinuous (Heaviside) function H and the near-tip asymptotic fields. The X-FEM approximation is
provided in Eq. (8), and the enrichment functions for isotropic media are given in Egs. (1) and (2). From
Eq. (13), we note that the integrand in the discrete approximation for the bilinear form would consist of
product of basis function derivatives. The derivatives of the enriched basis functions are discontinuous
across the crack. ! Hence, if the element shown in Fig. 6 is not subdivided, the numerical integration of a
discontinuous function is involved. A well-known recipe in multi-dimensional integration over simplexes is
to place line singularities and discontinuities along edges and point singularities at vertices of simplexes. If
discontinuities are present within a simplex, then the use of Gauss quadrature rules will prove to be in-
accurate for such integrals. To illustrate this, we consider a discontinuous function and a piece-wise con-
tinuous function that are defined in Q = (—1/2,1) (Fig. 7). We define the integral /[ f] as:

10/ = / £ () dx (14)

and consider the Gauss quadrature formula Q| f]:

nsp

1f1=0lf):= 7> wf (&), (15)

where x = x(§) is the linear map with ¢ € (—1,1) the reference coordinate. In addition, the Jacobian
J =dx/d& = 3/4, and w; and &, are the Gauss points and weights for a nsp-order Gauss integration rule.

! Referring to Fig. 6, we point out that (N;H ) ; would also consist of a term N;or,n - ¢; (n is the unit normal to the crack and Jr, is
the o-distribution); we do not consider this term since products of such terms that would appear in the bilinear form are non-integrable
in the Lebesgue sense.
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D C
Convex domain /
G
crack
F
E
/
Non-convex domain
A B

Fig. 6. Intersection of a crack with a finite element.

1.0
05¢
0.0 — ¢ *function
—— cPfunction
-0.5 L
-0.5 0.0 0.5 1.0

Fig. 7. C~! (discontinuous) and C° (ramp) functions.

The exact value of the integrals are: I[f] = 3/4 and I[f] = 1/2 for the jump function and the piece-wise
linear function, respectively. In Table 1, the results obtained using Gauss quadrature are presented for
different values of nsp. It is evident that Gauss quadrature rules prove to be inadequate for the integration
of such functions. However, if the domain is subdivided: Q = Q, UQ, = (-1/2,0) U (0,1), and then Eq.
(15) is applied to each subdomain, the exact solution is recovered. On the basis of the above discussion, we
infer that the crack geometry must coincide with edges of simplexes used in the numerical integration. From
Fig. 6, we note that this can be achieved by carrying out numerical integration on the convex subdomain

Table 1
Numerical integration of discontinuous and piece-wise continuous functions
f(x) No. of Gauss points (nsp) ol f] I1f]
c! 1 1.5000 0.75
2 0.3750
5 0.6950
7 0.6101
10 0.7075
Cc® 1 0.3750 0.5
2 0.5123
5 0.5066
7 0.4996
10 0.5015
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CDEFG and the non-convex subdomain ABGFE. The design and development of quadrature rules over
arbitrary polygons has not yet reached a mature stage; for the difficulties associated with this endeavor and
recent progress achieved in this direction, see Rashid and Gullett (2000). The partitioning of the convex and
non-convex subdomains into triangles is a simple task which then permits the use of well-known quadrature
rules for triangles. In essence, this is an elegant and tractable means to judiciously choose the location of
integration points and their weights to perform numerical integration on arbitrary polygons. Hence, the
theoretical issues notwithstanding, from a purely computational viewpoint, the partitioning of elements
that are cut by the crack is a viable and cost-effective approach to perform sufficiently accurate numerical
integration.

We now delineate the distinction of the above partitioning procedure from a remeshing algorithm.
Remeshing engenders the construction of a richer discrete space (better approximating power) by increasing
the number of basis functions in the approximation. This is achieved by refining the mesh near a singularity
(gradients are large in the vicinity of the singularity). The remeshing algorithm, however, must ensure that
the derivatives of the basis functions in any element do not become very large. This is met by imposing
certain restrictions on the shape of elements so that the wuniformity condition on the basis functions is
satisfied; badly shaped elements (e.g., triangular elements with obtuse angle close to ) impact accuracy and
the rate of convergence of the finite element method. The partitioning procedure used in the X-FEM differs
from remeshing in a few key aspects:

1. In the X-FEM, element partitioning is done solely for the purpose of numerical integration; no addi-
tional degrees of freedom are introduced into the discrete space.

2. No inherent restrictions are placed on the shape of the partitioned elements, since the basis functions
(classical finite element as well as enriched) are associated with nodes that are tied to the parent element
and not to the subtriangle. In Appendix A, we list a subroutine that is used to compute (&, ) (O is the
bi-unit square).

3. The task of subdividing an element that is cut by a crack into triangles in 2-d or tetrahedra in 3-d is a
relatively straight-forward exercise in computational geometry.

2.1.4. Discrete equations
From Eq. (13), the discrete weak form for linear elastostatics is:

t/mMM:/h%WH/EﬁWMVWG% (16)
lod fod oQl

where u" € U" and ou" € Ug are the approximating trial and test functions used in the X-FEM, and the
linear elastic constitutive relation is: ¢ = D : &, where D is the constitutive matrix (plane stress or plane
strain) for an isotropic linear elastic material. The finite element domain Q" = U™ Q" where Q" is an ele-
ment (or a subdivision of an element) such that the crack lies along the edges of these elements. On using
the weak form as the starting point, Belytschko and Black (1999) showed that the discontinuous discrete
approximation satisfies (in a weak sense) the traction-free conditions on the crack faces.

On substituting the X-FEM trial and test functions in the above equation, and using the arbitrariness of
nodal variations, the following discrete system of linear equations is obtained:

Kd =, (17)

where d is the vector of nodal unknowns, and K and f are the global stiffness matrix and external force
vector, respectively. The stiffness matrix and the force vector are computed on an element-by-element basis
and assembled into their global counterparts through the usual assembly procedure (see Section 3.4 for
details). The element contribution to K and f are as follows:
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uu ua ub
kY K K

e au aa ab
k' k' Ok
fi={f & & & 9 9 (18b)
where the submatrices and vectors that appear in Eq. (18) are defined as:
rso__ T S —
k) = /E(B,.) DB dQ (r,s=u,a,b) (19a)
= / NE + [ Nbde, (19b)
RloAlaklen @°
o = / NHET + | N.HbAQ, (19¢)
Rloplatlen @
" = / Ni@tdl + | N®,bdQ (x=1-4). (19d)
Qi noqe Q"

In the above equations, W, is the standard finite element shape function that is defined at node i (i = 1, nen)
of the finite element, where nen is the number of nodes in the connectivity of the finite element. The number
of degrees of freedom ndof = 2 in 2-d elasticity. Nodes in the set ./ have one enriched degree of freedom
in each spatial dimension, and nodes in the set ./", have four enriched degrees of freedom in each spatial
dimension—refer to Section 2.1.1. for details on the nodal sets A" and .47 ,.

In Eq. (19), B!, B, and B! are the matrix of shape function derivatives which are given by

Nz 0

le = O ]vi,y s (203)
[ (), 0

Bi=1 0 (NH), |, (20D)
| (Vi) (NiH)

B! =[B! B” B” B] (20c)
(]vl'(p“),x O

B = 0 (N®,),| (x=14). (20d)

(Niby),  (Ni®,),

3. Computer implementation

The task of incorporating the X-FEM capabilities within a general-purpose finite element program can
be broken down into the following subcategories:

1. Input data (crack geometry, enrichment types, crack growth law)
2. Nodal degrees of freedom
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3. Mesh—geometry interactions (nodal enrichment and element partitioning)
4. Assembly procedure
5. Post-processing

The central ideas and issues that are described below are based on the original development of the X-FEM
in Moés et al. (1999) and Daux et al. (2000), where C++ was used as the programming language and the
tools developed within that framework were ideally-suited for the incorporation of many different appli-
cations within one code (Dolbow, 1999; Sukumar et al., 2001; Wagner et al., 2001; Sukumar et al., 2003a; Ji
et al., 2002). In the present instance, we address similar issues and describe a means to incorporate the same
capabilities within a Fortran programming environment—Dynaflow™ (Prévost, 1983) is considered in
this study.

3.1. Input data

In finite elements, the finite element mesh is used to fully describe the model domain as well as the
internal boundaries (defects such as holes and cracks). In the X-FEM, the problem domain is represented
by a finite element mesh, whereas the internal boundaries such as cracks are not. The enriched displacement
approximation given in Eq. (8) is used to account for the presence of the cracks in the model. In 2-
dimensions, we represent cracks as piecewise linear segments, with the crack tip being a point in 2-space:
each crack is defined by contiguous piecewise linear segments, i.e., I'. = U7 1;, where I, = {x,x}}, with
xi =xi! fori=2,3,...,p. The crack-tip(s) are either or both of x! and x}.

In the input data file, the crack geometry, enrichment type for the crack, and parameters for crack
growth (evolution) are indicated. Keywords that have to appear verbatim in the data file are cast in
typewriter font. A backslash (\) denotes continuation within a block, the text after an exclamation (!)
is treated as comments, and a blank line denotes the end of a block. Each model is subdivided into regions
(DEFINE_REGION) where the physical phenomenon in the region is typically described by a set of partial
differential equations. In the finite element model, a region consists of a union of finite elements and the
physics acting in the region is embedded within several ELEMENT_GROUP. This demarcation allows the
integration of multi-physics processes (thermoelastic, fluid-structure, or poroelastic) to be readily simu-
lated. Each region may consist of a link to several element groups—a crack is an element group with
geometric properties (connectivity) and a material model (properties, parameters for stress intensity factor
computation, crack growth law, etc.). A single crack is defined within one DEFINE_ELEMENT_GROUP
block; multiple blocks are required for multiple crack definitions. Six different keywords have been defined
for crack enrichment, namely

crackwithout_tip (Heaviside),
crackwith tip.1 (Heaviside + crack functions at tip 1),
_ crack with tip 2 (Heaviside + crack functions at tip 2),
enrichment_type = . .
crack (Heaviside + crack fns at both tips),
crack bimat_tip.1 (Heaviside + bimat crack fns at tip 1),
crack bimat_tip-2 (Heaviside + bimat crack fns at tip 2),

where the last two definition are for the bimaterial crack problem. A sample input file used for the extended
finite element analysis in Dynaflow™ is available from the web site: http://dilbert.engr.ucdavis.edu/~suku/
xfem/dynaflow/input_dyna.dat.


http://dilbert.engr.ucdavis.edu/~suku/xfem/dynaflow/input_dyna.dat
http://dilbert.engr.ucdavis.edu/~suku/xfem/dynaflow/input_dyna.dat
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3.2. Nodal degrees of freedom

In the finite element implementation for problems in 2-d linear elasticity, there are two unknowns at each
node (ndof = nsd = 2). These correspond to the nodal displacements in each coordinate-direction. In the
extended finite element, as is evident from Eq. (8), apart from the classical degrees of freedom, additional
unknown enriched degrees of freedom are introduced via the displacement approximation. A Galerkin
procedure is used to solve for both, the classical as well as enriched degrees of freedom. Since these enriched
degrees of freedom are intrinsically based on the support properties of the shape functions associated with
the original nodes in the mesh, it is natural to associate these unknown coefficients to the nodes themselves.
In higher-order finite elements (bi-quadratic, bi-cubic, etc.), unknowns are tied to additional nodes that are
introduced along the element edges.

Arrays are assumed to start with 1 unless otherwise indicated. In Dynaflow™, the nodal integer array Id
is used to map a specific classical degree of freedom of a node to the global equation number. For the
classical finite element method, the array is: Id(1 : ndof, 1 : nnode) = P, where P is the global equation
number. To accommodate the enriched degrees of freedom, a new integer array was defined for the en-
richment: I1dX(1 : ndof, 1 : ndofX,1 : nnode) = P, where the first slot is for the number of spatial degrees of
freedom. In addition, ndofX is the maximum number of enriched degrees of freedom in each coordinate
direction, and nnode is the number of nodes in the mesh. The array Id could have very easily been ex-
panded to accommodate the enrichment; however, to reduce the likelihood of any conflict with existing
applications, we chose to use a different array IdX for the enriched degrees of freedom. The value of ndofX
can be specified in the input data file within the DEFINE_PROBLEM block. If it is not specified in the data
file, the value of ndofX is inferred based on the enrichment_type indicated in the data file. For example,
if enrichment_type=Heaviside, then ndofX =1, but if enrichment_type=-crack, then
ndofX =4 since a node cannot have both Heaviside and near-tip enrichment. In the event of multiple
cracks, this variable should be appropriately set since it is possible that more than one crack may intersect
the same element.

Now, the array TdX alone is not sufficient to fully quantify the enrichment for a crack. Since the appeal of
the X-FEM is in the treatment of multiple cracks within the same framework, one must allow for the existence
of multiple cracks within the same domain. Hence, by extension from the single crack case, when multiple
cracks are present, separate nodal enrichment is required to ensure the presence of each crack in the domain.
It follows that the enriched degrees of freedom at a node must be tied to a crack id, which would permit the
computation of the appropriate enrichment function. This suggests the need to provide an additional data
structure—a key which maps the degree of freedom information to a particular crack. This character*20
array is dimensioned as: Xdof key(l : ndof, 1 : ndofX,1 : nnode). The name of the enrichment function is
stored in the first to the eighteenth character (name is distinct for the two crack-tips), the nineteenth character
is the enrichment function number (o« = 1-4 for the near-tip functions) and the twentieth character is the crack
id. The Xdof key array is filled-up when the enriched nodes are selected. A simple concatenation is done
using the char function, for example ‘Heaviside_crack_id’//char(ifunc)//char(crack_id)), and the extraction is
done using the ichar function. Thus, for a direction idof (1 : ndof) with enrichment idofX (1 : ndofX) at
node 7, the corresponding equation number is obtained as P = IdX(idof,idofX,I), and the enrichment
function number and crack number are func_id = ichar(key(19 : 19)) and crack_id = ichar(key(20 : 20)),
respectively, where key = Xdof _key(idof ,idofX,I).

™

3.3. Mesh—geometry interaction

In 2-d, the finite element mesh consists of triangular and quadrilateral elements, and the crack is rep-
resented as a union of line segments with the crack-tip represented by a point. In the earlier 2-d (Daux et al.,
2000) and 3-d (Sukumar et al., 2000) implementation of the X-FEM, the use of geometric predicates was



N. Sukumar, J.-H. Prévost | International Journal of Solids and Structures 40 (2003) 7513-7537 7527

adopted. These also form an integral part in this work. In the following subsection, we discuss the concept
of geometric predicates. In carrying out the enrichment, one of the first tasks is to determine the finite
elements that intersect the crack. These finite elements are partitioned into triangles, which serves a dual
purpose—first to compute the areas of the subtriangles above and below the crack (area-criterion in Section
2.1.2), and secondly so that the numerical integration of the bilinear form accounts for the discontinuities
on either side of the crack.

3.3.1. Geometric predicates

Since data is stored and computations performed using finite-precision arithmetic, it is essential that the
robustness of algorithms is maintained even for small perturbations in the data. Efforts have been made to
develop robust geometric predicates (Shewchuk, 1997), which are especially important in the development
of algorithms for the Delaunay tessellation and Voronoi diagram of a point set.

The incircle and orientation tests are widely used in computational geometry. The orientation test de-
termines whether a point lies to the left of, to the right of, or on a line or plane defined by other points. The
incircle test determines whether a point lies inside, outside, or on a circle defined by other points. Each of
these tests is performed by evaluating the sign of a determinant. If the value of the determinant is close to
zero, then computing the intersection of line segments is error-prone—on using single-precision or double-
precision data, round-off errors could lead to an erroneous result or even failure in the intersection algo-
rithm. Instead of explicitly computing intersections, geometric predicates provide an easier and robust
means to evaluate queries.

In the X-FEM implementation, we adopt the orientation test to determine the nodal enrichment for a
query point x and also use it in the algorithm for the partitioning of the finite elements into triangles. For a
query point x = (x, y), we consider the triangle with vertices (xi, X,, X), where x; = (x1,1) and X, = (x2,)»)
are the coordinates that define a crack segment. Twice the signed area of the triangle (determinant A) is
evaluated:

A=(x1 =x)0n =) — (2 =x)(n —»). (21)

To test the orientation of a point with respect to the crack, the ternary predicates ABOVE (A > ¢) , BELOW
(A < —¢), and ON (—e < A <€) are used. A tolerance e = 107 is used for a finite element mesh with element
edge length of O(1).

3.3.2. Nodal enrichment and element partitioning

We first discuss the selection of the enriched nodes, then touch upon the computation of enrichment
functions, and lastly discuss the partitioning of the finite elements that are intersected by the crack. To
select the nodes for enrichment, a loop over the cracks and then over all the elements in the mesh suffices. A
bounding-box algorithm that returns all the elements (set &) in the vicinity of the crack proves to be
computationally efficient. In Fig. 8, a flowchart illustrating the selection of enriched nodes for a single crack
¢ is presented. The nodal enrichment information is stored in the Xdof_key array.

The computation of the enrichment functions is straight-forward. For a Gauss point x in an enriched
element e, the binary predicates ABOVE (H = 1) and BELOW (H = —1) provide the value of H. The de-
rivative of H is zero at a Gauss point. To compute the near-tip enrichment functions, the local crack-tip
coordinate (xic, Voc) Of X is determined. Using these, the polar coordinates are: r = \/x2_ + ). and
0 = tan~! (Jioc/X10c). The derivatives of the near-tip enrichment functions are found in the local coordinate
system and a vector transformation is used to obtain their derivatives with respect to the global (x,y)
Cartesian coordinate system.

The element partitioning algorithm adopted in Daux et al. (2000) is described in Sukumar et al. (2000);
the C++ code is also available in the public-domain (Sukumar, 2000). The C++ code was converted to
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Fig. 8. Flowchart for selection of nodes for enrichment.

Fortran and implemented in Dynaflow™, with a few notable additions. We have implemented a tree data
structure in conjunction with a linked list to permit the partition of a finite element that has a kink within it
or one that is intersected by more than one crack. Geometric predicates and simple line-line intersection
routines are used. An example illustrating the partitioning algorithm is shown in Fig. 9.

3.4. Assembly procedure

The stiffness matrix and force vector assembly are done on an element level, which is similar to classical
finite element implementation. The distinction herein is that the dimensions of the element stiffness matrix
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Fig. 9. Partitioning of finite elements in 2-d. (a) Finite element mesh and crack geometry; (b) Partitioning of element e; that is in-
tersected by the crack (dark line); and (c) Partitioning of element e, that is intersected by the crack (dark line).

can differ from element (unenriched) to element (enriched). In our implementation, the element partitioning
is done when required and the subtriangles are not stored; in Moé€s et al. (1999) and Daux et al. (2000), the
partitioning was a pre-processing step and all the subtriangles were stored.

To assemble the stiffness matrix, we loop over all the elements, e = 1 : numel. If the IdX entry for a node
is non-zero, then the node is enriched; if all the nodes in an element are not enriched, the element is a
standard finite element and the element stiffness matrix for a 3-node triangular or 4-node quadrilateral
element is computed. If the element e contains at least one enriched node, then the contribution in the
stiffness matrix due to the classical degrees of freedom as well as the enriched degrees of freedom are
evaluated—both contributions are stored in a single element stiffness matrix.

Elements that are partitioned require special treatment: as indicated before, partitioning is needed to
ensure the equivalence between the strong form and the weak form and in addition it is also used to ac-
curately integrate the bilinear form on either side of the crack discontinuity. Special (higher-order)
quadrature rules are used on elements that are partitioned (Moés et al., 1999). On elements that are par-
titioned, a six-point integration rule is used in the subtriangles. In Fig. 9, a structured (rectangular) mesh
containing an arbitrarily oriented crack is shown. The crack intersects some of the finite elements, and the
subtriangles formed for elements e; and e, are illustrated in Fig. 9b and c. A finite element (parent) is
denoted by e,, whereas qu is used for a subtriangle (child) that belongs to e,. For an element e, that has been
partitioned, we loop over all its children (subtriangles). The isoparametric mapping for each Gauss point
&, < e) gives the global coordinate: x = S Nf(&)x;. Now, since the degrees of freedom (classical as
well as enriched) are defined on the parent (4-node) element, the local coordinate &5 (O is the reference bi-
unit square) is required to evaluate the derivatives of the finite element shape functions. To this end, an
inverse map &5 = x'(&;) from the global to the local coordinate-system is performed. The sequence of
steps at a Gauss point in a subtriangle are: 6? — X — &. Once & is computed, Egs. (19) and (20) are used
to evaluate the contributions to the stiffness matrix. In Appendix A, we provide a listing of the subroutine
used to compute &5 in 2-d and 3-d.

A description of the update of the global stiffness matrix from the element stiffness matrix is outlined.
The element connectivity array IEN(nen, ) contains the mapping from the local node number to the global
node number, i.e., I = Ien(i,e), where ] is the global node number, i is the local node number (i = 1, nen),
and nen is the number of nodes in the connectivity of element e. Using IEN(nen, e), we localize the global
equation numbers from the Id/IdX arrays into a local equation array LM(ndof,0 : ndofX , nen) as:

LM(idof,0,i) = Td(idof, TEN(i,e)), (22a)

LM(idof ,idofX i) = 1dX(idof ,idofX , IEN(i,e)). (22b)
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The element stiffness matrix and element force vector are assembled into local arrays ke and fe with
dimensions ke(nee, nee) and fe(nee), respectively, where the dimension nee = ndof (1 + ndofX )nen. The
assembly of the local stiffness matrix and the external force vector for element e proceeds in a straight-
forward and classical fashion in which ke and fe are passed to assembly routines where looping over the
local equation numbers is carried out:

do p=1, nee
P=LM(p)
if (P>0) then
do g=1, nee
0= LM(q)
if (Q>0) then
K(P,Q) = K(P,Q) + ke(p.q)
endif
enddo
f(P) = f(P)+ fe(p)
endif
end

3.5. Post-processing

In the X-FEM, the degrees of freedom in unenriched elements are synonymous with nodal displace-
ments. However, the classical degrees of freedom in an enriched element are in general no longer the nodal
displacement—the nodal displacement is found by evaluating Eq. (8) at an enriched node. Since dis-
placement plots are required to check the presence of the discontinuity and also to plot the deformed shape,
it is desirable to expedite the evaluation of the displacement at the nodes. To this end, the values of the
enrichment functions at the nodes are stored in an array. Since H(x) is undefined at a node (say n;) that lies
on the crack, the enrichment function is multi-valued (+1 and —1). This also applies to the first near-tip
function in Eq. (2), namely +/rsin(0/2), which is discontinuous across the crack (0 = £m). Since nodal
output is element-based, in both cases, the appropriate sign is selected by knowing the element e under
consideration (n; € .A4",). A simple check using the geometric predicates at x,. (center of element e) provides
(ABOVE or BELOW) the sign to be used.

Fracture parameters such as the mode 7 and mode /7 stress intensity factors (SIFs) are determined using
the domain form (Li et al., 1985; Moran and Shih, 1987) of the interaction integral (Yau et al., 1980). In the
X-FEM, due to the enrichment with the near-tip fields, the SIFs can be expressed as a linear combination of
the enriched coefficients. If the crack-tip A. is inside an element e, then for a pure mode / problem in 2-d,
the expression for Kj is:

E 2 nen
K = 1V_:‘2 ZN (X)bY, x€ A, (23)

where N; is the finite element shape function for node i, and b;i are enriched coeflicients that are tied to the
near-tip function @; and to the displacement approximation in x,-direction. However, extraction of the
SIFs directly from these coefficients is not sufficiently accurate. In general, the use of crack-tip flux integrals
leads to better accuracy than even extrapolation (displacement or stress) techniques. In the domain integral
form of the interaction integral, the numerical computations are carried out in elements (by appropriate
choice of the weighting function) that are distant from the crack-tip; in these elements the field quantities
are much more accurate than those in the vicinity of the crack-tip. For SIF computations, the domain form
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of path-independent flux integrals is also used in commercial finite element codes (e.g., ABAQUS™); we
adopt the same approach for the computation of stress intensity factors in this implementation. The
J-integral is related to the mixed mode SIFs through the relation:

K E (plane stress),
S=rt o N 1-2 (plane strain), -

where E and v are the Young’s modulus and Poisson’s ratio, respectively.

In the interaction integral method (Yau et al., 1980), the 2-d plane strain auxiliary fields are introduced
and superposed on the actual fields that arise from the solution of the boundary-value problem. By judi-
cious choice of the auxiliary fields, the interaction integral can be directly related to the mixed-mode stress
intensity factors. The domain form of the interaction integral is computed on these elements (Yau et al.,
1980). The domain form of the interaction integral is a well-established technique to determine mixed-mode
SIFs in fracture computations with the finite element method. All the finite elements within a radius of
rq = rih, from the crack-tip are selected. Here, 4, is the crack-tip element size and r; is a scalar multiple. All
elements within a radius of r, from the crack-tip are marked. Let us denote this element set by .4/, with @,
defining the resulting discrete (union of elements) domain. The weighting function ¢ that appears in the
domain form of the interaction integral is then set: if a node »; that is contained in the connectivity of
element e € A" Z lies on the boundary GQZ, then ¢; = 0; if node #; lies in QZ, then ¢; = 1. Since the gradient of
q appears in the domain integral expression, non-zero contribution to the integral in the numerical com-
putations is obtained only for elements with an edge that lies on 6(22. For additional details on the eva-
luation of the SIFs in the X-FEM, see Moes et al. (1999).

Some of the well-known crack growth criteria are: maximum hoop (circumferential) stress criterion
(Erdogan and Sih, 1963); maximum energy release rate criterion (Nuismer, 1975); and the maximum strain
energy density criterion (Sih, 1974). These criteria predict slightly different angles for the initial kink, but
they all predict that once the kink is initiated, the crack trajectory is such that K; = 0 (principle of local
symmetry). The maximum hoop stress criterion (Erdogan and Sih, 1963) gives the crack growth direction:

L1 K K\
0,=2tan"' = | ==+ — 8 25
"\ & (KH> o (25)

where 0, is the crack growth angle in the local crack-tip coordinate system. If K; = 0 then 0, = 0 (pure
mode 7). By noting that if K;; > 0, the crack growth angle 6. < 0, and if K;; < 0, then 6. > 0, a compu-
tationally more amenable expression for 6. is implemented (Suo, 2002):

—2K;; /K
0.=2tan"! n/Ki , (26)

1+4/1+8(Ky/K;)

where i = tan~!(Kj;/K;), the mode angle, is a measure of the ratio of mode I/ to mode 1. The application of
the X-FEM to crack growth problems is presented in Part IT (Huang et al., 2003b), which follows this
publication.

4. Conclusions
In this paper (Part I of a two-part series), we have demonstrated a simple and robust means to im-

plement the modeling of discontinuous fields within an existing finite element program. The methodology
adopted for modeling crack discontinuities falls within the purview of the extended finite element method
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(X-FEM) (Moes et al., 1999; Daux et al., 2000), which is a particular instance of the partition of unity
method (Melenk and Babuska, 1996; Duarte and Oden, 1996). The finite element program Dynaflow™
(Prévost, 1983) was used in this study, and the implementation for crack modeling in isotropic and bi-
material media was described. Issues pertaining to the selection of nodes for enrichment, computation of
the enrichment functions, array-allocation for the enriched nodal degrees of freedom, mesh—geometry in-
teractions, and assembly of the global stiffness matrix and external force vector were addressed. This study
has provided the capability and revealed the relative ease by which discontinuous fields through the par-
tition of unity framework can be incorporated within a standard finite element package.
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Appendix A

Assume that a quadrilateral element which is cut by a crack is partitioned into triangular elements. The
bilinear form (stiffness matrix) is computer over each subtriangle. On knowing the physical coordinates
(x,») of a point within a subtriangle, the local coordinates (¢, i) (O is the bi-unit square that is mapped to
the quadrilateral) are required to compute the finite element shape functions and their derivatives. The
Fortran code to carry out the transformation follows; a Newton—-Raphson iterative algorithm is used.

C***********************************************************************

subroutine inversemap(Xxy, X, Xe, nsd, nen, topo)
Purpose: Compute the inverse mapping from the physical space to
= = == the reference element for 2-d and 3-d finite elements

c
c
c
c
¢
¢ mnodal coordinates :xy(nsd,nen)

¢ coordinates :x(nsd) in physical space

¢ topo :character array (topology of the element)

¢ nsd=number of space dimensions, nen=number of nodes/element
c Output

e —

c

c

local coordinates:xe(l) =xi, xe(2) =eta, xe(3) =zeta in the

reference bi-unit square/cube
C***********************************************************************
c

implicit real*8 (a-h,0-2)

parameter (Nsd max=3, Nen_max=28)

character* (*) topo
dimension xy(nsd, *), x(*), xe(*)
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dimension xs(Nsd_max * Nsd_max), sh((Nsd_max+ 1) * Nen_max)
dimension point(Nsd_max), xe_new(Nsd_max)

parameter (iter_max=50, err_tol=1.d-8)

nshp=nsd+1

initialize

iter=0

call dclear(xe,nsd) !clear the array
iter=iter+1

get shape functions at xe
call shapl(xe, sh,nen, nshp,nsd, O, topo)

compute inverse of the jacobian map
call xjacobian(xs, Xy, nsd, sh, nshp, nen)

compute coordinates of point
call dclear(point,nsd)
do i=1,nsd
do j=1,nen
point (i) =point(i) +sh((nsd+1) +nshp* (j—1)) *xy(1i,]J)
enddo
enddo

update xe
do i=1,nsd
xe_new(i) =xe(1)
do j=1,nsd
xe_new(i)=xe_new(i) +xs(i+nsd*(j—1)) *(x(Jj)—point(j))
enddo

enddo
error
do i=1,nsd
xe (1) =xe_new(i)—xe(1)
enddo

err=sqrt(dotl(xe,xe,nsd)) !dotl (function for dot product)
calldmove (xe, xe_new,nsd) !'move xe_new to xe
if (err .le.err_tol) then
goto 99
elseif (iter .1t.iter_max) then
goto 1
else
call pend('inversemap: convergence failed') !'error message
endif
return
end
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subroutine xjacobian(xs, x1,nsd, sh, nshp, nen)
Purpose: Compute the inverse of the jacobian map
Output

[e e e INe]

xs(nsd,nsd) : inverse of the jacobian map
C-)(--)(-******************-)6-)6-)(»-)(»-)(—-)(—-)(—********************************************
c
implicit real*8 (a-h,o0-2)
dimension xs(nsd, *), x1(nsd, *), sh(Nshp, *)
dimension cof(3,3), xinv (3, 3)
parameter (zero=0.d0, one=1.d0)
call dclear(xs,nsd *nsd)
doi=1,nsd
do j=1,nsd
do k=1,nen
xs(i,j)=xs(i,J)+x1(i,k)*sh(j,k)
enddo
enddo
enddo
if (nsd .eq.2) then
det=xs(1,1)*xs(2,2)—xs(1,2) *xs(2,1)
if (det .1le.zero) call pend('xjacobian:det .1le. Q')
call dotacl(xs, one/det,nsd *nsd)
tmp=xs(1,1)
xs(1l,1)=xs(2,2)
xs(2,2)=tmp
xs(1l,2)=—-xs(1,2)
xs(2,1)=-xs(2,1)
else
COF(1l,1)=X8(2,2) *X8(3,3)—X5(3,2) *X5(2,3)
COF(1,2)=X5(2,3) *XS(3,1)—-XS(2,1) *XS5(3, 3)
COF(1,3)=X5(2,1)*XS5(3,2)—-X8(3,1) *X5(2,2)
COF(2,1)=X5(3,2) *XS5(1,3)—-X8(1,2) *X5(3, 3)
COF(2,2)=XS(1,1) *XS(3,3)—XS(3,1) *X5(1, 3)
COF(2,3)=X5(3,1) *X8(1,2)—-XS(1,1) *XS5(3,2)
COF(3,1)=X85(1,2) *X8(2,3)—XS(2,2) *X5(1,3)
COF(3,2)=X5(2,1) *XS5(1,3)—-XS(1,1) *XS5(2, 3)
COF(3,3)=X5(1,1) *XS5(2,2)—-X8(2,1) *X5(1,2)

det=XS(1,1)*COF(1,1)+XS(1,2)*COF(1,2)+XS(1l,3)*COF(L,3)
if (det .le.zero) call pend('xjacobian:det .1le. Q')

call dotacl(xs, one/det,nsd *nsd)

XINV(1,1)= (XS(2,2)*XS(3,3)—XS(3,2) *X3(2,3))
XINV(1,2)=—(XS(1l,2) *XS(3,3)—-X5(3,2) *X5(1,3))
XINV(1,3)= (XS(1,2)*XS(2,3)—XS(2,2)*XS(1,3))
XINV(2,1)=—(XS(2,1) *XS(3,3)—XS(3,1) *X3(2,3))
XINV(2,2)= (XS(1,1)*XS(3,3)—XS(3,1)*XS(1,3))
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XINV(2,3)=—(X8(1,1) *XS(2,3) —X5(2,1) *X8(1,3))
XINV(3,1)= (X5(2,1)*XS(3,2)—-XS5(3,1) *X8(2,2))
XINV(3,2)=—(X8(1,1) *XS(3,2) —X5(3,1) *X8(1,2))
XINV(3,3)= (X8(1,1)*XS(2,2)—-XS(2,1)*X58(1,2))
call dmove(xs,xinv, nsd *nsd)

endif
c
return
end
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